Saturated and weakly saturated hypergraphs

ثبت نشده
چکیده

Lubell proved this by observing that the left-hand side is a probability: it is simply the probability that a maximal chain, chosen uniformly at random, intersects A. The LYM inequality implies that an antichain in P([n]) has size at most ( n bn/2c ) , the size of the ‘middle layer’ in P([n]). (This can also be proved by partitioning P([n]) into ( n bn/2c ) disjoint chains.) Bollobás’ Inequality is a useful extension of the LYM inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On hamiltonian chain saturated uniform hypergraphs

We say that a hypergraph H is hamiltonian chain saturated if H does not contain a hamiltonian chain but by adding any new edge we create a hamiltonian chain in H. In this paper we ask about the smallest size of a k-uniform hamiltonian chain saturated hypergraph. We present a construction of a family of k-uniform hamiltonian chain saturated hypergraphs with O(nk−1/2) edges.

متن کامل

Hamilton-chain saturated hypergraphs

We say that a hypergraph H is hamiltonian path (cycle) saturated if H does not contain an open (closed) hamiltonian chain but by adding any new edge we create an open (closed) hamiltonian chain in H. In this paper we ask about the smallest size of an r-uniform hamiltonian path (cycle) saturated hypergraph, mainly for r = 3. We present a construction of a family of 3-uniform path (cycle) saturat...

متن کامل

Size of weakly saturated graphs

Let P be a hereditary property. Let kP(G) denote the number of forbidden subgraphs, which are contained in G. A graph G is said to be weakly P-saturated, if G ∈ P and the edges of the complement of G can be labelled e1, e2, . . . , el in such way that for i= 0, 1, . . . , l− 1 the inequality kP(Gi+1)> kP(Gi) holds, whereG0=G,Gi+1=Gi + ei andGl =Kn. The minimum possible size of weakly P-saturate...

متن کامل

Less Saturated Ideals

We prove the following: (1) If κ is weakly inaccessible then NSκ is not κ+-saturated. (2) If κ is weakly inaccessible and θ < κ is regular then NSθ κ is not κ +saturated. (3) If κ is singular then NS κ+ is not κ++-saturated. Combining this with previous results of Shelah, one obtains the following: (A) If κ > א1 then NSκ is not κ+-saturated. (B) If θ+ < κ then NSθ κ is not κ +-saturated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011